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Abstract. Collaborative filtering (CF) is widely applied in recommender
systems. However, the sparsity issue is still a crucial bottleneck for most
existing CF methods. Although target data are extremely sparse for a
newly-built CF system, some dense auxiliary data may already exist in
othermatured related domains. In this paper,wepropose anovel approach,
TwinBridge Transfer Learning (TBT), to address the sparse collaborative
filtering problem. TBT reduces the sparsity in target data by transferring
knowledge from dense auxiliary data through two paths: 1) the latent fac-
tors of users and items learned from two dense auxiliary domains, and 2)
the similarity graphs of users and items constructed from the learned la-
tent factors. These two paths act as a twin bridge to allow more knowledge
transferred across domains to reduce the sparsity of target data. Exper-
iments on two benchmark datasets demonstrate that our TBT approach
significantly outperforms state-of-the-art CF methods.

Keywords: Collaborative Filtering, Sparsity, Transfer Learning, Latent
Factor, Similarity Graph, Twin Bridge.

1 Introduction

Recommender systems are widely deployed on the Web with the aim to improve
the user experience [1]. Well-known e-commerce providers, such as Hulu (video)
and NetFlix (movies), are highly relying on their developed recommender sys-
tems. These systems attempt to recommend items that are most likely to attract
users by predicting the preference (ratings) of the users to the items. In the last
decade, collaborative filtering (CF) methods [2–4], which utilize users’ past rat-
ings to predict users’ future tastes, have been most popular due to their generally
superior performance [5, 6]. Unfortunately, most of previous CF methods have
not fully addressed the sparsity issue, i.e., the target data are extremely sparse.

Recently, there has been an increasing research interest in developed transfer
learning methods to alleviate the data sparsity problem [7–13]. The key idea
behind is to transfer the common knowledge from some dense auxiliary data
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to the sparse target data. The common knowledge can be encoded into some
common latent factors, and extracted by the latent factorization models [14].
Good choices for the common latent factors can be the cluster-level codebook
[8, 9], or the latent tastes of users/latent features of items [11–13]. The transfer
learning methods have achieved promising performance over previous methods.

However, when the target data are extremely sparse, existing transfer learning
methods may confront the following issues. 1) Since the target data are extremely
sparse, the latent factors extracted from the auxiliary data may transfer negative
information to the target data, i.e., the latent factors are likely to be inconsistent
with the target data, which may result in overfitting [15]. We refer to this issue
as negative transfer. 2) As the target data are extremely sparse, it is expected
that more common knowledge should be transferred from the auxiliary data to
reduce the sparsity of the target data [16]. We refer to this issue as insufficient
transfer. Solving these two issues both can reduce the sparsity more effectively.

In this paper, we propose a novel approach, Twin Bridge Transfer Learning
(TBT), for sparse collaborative filtering. TBT aims to explore a twin bridge cor-
responding to the latent factors which encode the latent tastes of users/latent
features of items, and the similarity graphs which encode the collaboration infor-
mation between users/items. TBT consists of two sequential steps. 1) It extracts
the latent factors from dense auxiliary data and constructs the similarity graphs
from these extracted latent factors. 2) It transfers both the latent factors and
the similarity graphs to the target data. In this way, we can enhance sufficient
transfer by transferring more common knowledge between domains, and allevi-
ate negative transfer by filtering out the negative information introduced in the
latent factors. Extensive experiments on two real-world data sets show promising
results obtained by TBT, especially when the target data are extremely sparse.

2 Related Work

Prior works using transfer learning for collaborative filtering assume that there
exist a set of common latent factors between the auxiliary and target data.
Rating Matrix Generative Model (RMGM) [9] and Codebook Transfer (CBT) [8]
transfer the cluster-level codebook to the target data. However, since codebook
dimension cannot be too large, the codebook cannot transfer enough knowledge
when the target data are extremely sparse. To avoid this limitation, Coordinate
System Transfer (CST) [12], Transfer by Collective Factorization (TCF) [11],
and Transfer by Integrative Factorization (TIF) [13] extract both latent tastes of
users and latent features of items, and transfer them to the target data. However,
these methods do not consider the negative transfer issue, which is more serious
when the target data are extremely sparse. Also, they only utilize a single bridge
for knowledge transfer. Different from all these methods, our approach explores
a twin bridge for transferring more useful knowledge to the sparse target data.

Neighborhood structure has beenwidely used inmemory-basedCF [17] or graph
regularizedmethods [4]. Neighborhood-BasedCF Algorithm [17] predicts missing
ratings of target users by their nearest neighbors. Graph Regularized Weighted
Nonnegative Matrix Factorization (GWNMTF) [4] encodes the neighborhood



498 J. Shi et al.

Table 1. Notations and their descriptions in this paper

Notation Description Notation Description

τ dataset index, τ ∈ {1, 2} R m × n rating matrix
m #target users Z m × n indicator matrix
n #target items U m × k latent tastes of users
p #nearest neighbors V n × k latent features of items
k #latent factors B k × k cluster-level codebook

λU , λV regularization param of latent factors γU , γV regularization param of similarity graphs

information into latent factor models, which can preserve the similarity between
user tastes or item features. However, these methods depend largely on dense rat-
ings to compute accurate neighborhood structure, which is impossible when the
data are extremely sparse.Different from thesemethods, our approach extracts the
latent factors of users/items from some dense auxiliary data, and then constructs
the neighborhood structure from these latent factors. In this way, the constructed
neighborhood structure is more accurate for sparse CF.

3 Problem Definition

We focus on sparse collaborative filtering where the target data are extremely
sparse. Suppose in the target data, we have m users and n items, and a set of
integer ratings ranging from 1 to 5. R ∈ R

m×n is the rating matrix, where Rij is
the rating that user i gives to item j. Z ∈ {0, 1} is the indicator matrix, Zij = 1
if user i has rated item j, and Zij = 0 otherwise. In order to reduce the sparsity
in the target data, we assume that there exist some dense auxiliary data, from
which we can transfer some common knowledge to the target data. Specifically,
we will consider two sets of auxiliary data, whose rating matrices are R1 and
R2, with indicator matrices Z1 and Z2, respectively. R1 shares the common set
of users with R, while R2 shares the common set of items with R. For clarity,
the notations and their descriptions are summarized in Table 1.

Definition 1 (Learning Goal). The goal of TBT is to construct 1) latent fac-
tors U0,V0 from R1,R2 and 2) similarity graphs LU ,LV from U0,V0 (Figure
1), and use them as the twin bridge to predict missing values in R (Figure 2).

4 Twin Bridge Transfer Learning for Recommendation

In this section, we present our proposed TBT approach, which is comprised of
two sequential steps: 1) twin bridge construction, and 2) twin bridge transfer.

4.1 Twin Bridge Construction

In the first step, we aim to construct the latent factors and similarity graphs of
users and items, which will be used as the twin bridge for knowledge transfer.
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Fig. 1. Step 1 of TBT: twin bridge construction. The goal is to extract the latent
factors and construct the similarity graphs from two sets of dense auxiliary data.

 

  

  

 

  

   

Fig. 2. Step 2 of TBT: twin bridge transfer. ’−→’ represents matrix tri-factorization,
’− →’ represents twin bridge transfer, � represents the transferred knowledge structure

Latent Factor Extraction. We adopt the graph regularized weighted nonneg-
ative matrix tri-factorization (GWNMTF) method proposed by Gu et al. [4] to
extract the latent factors from the two sets of dense auxiliary data R1 and R2

L = min
Uτ ,Bτ ,Vτ≥0
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where γU and γV are graph regularization parameters, LU
τ , L

V
τ are the graph

Laplacian matrices, ‖·‖ is the Frobenius norm of matrix. Uτ = [uτ∗1, ..., uτ
∗k] ∈

R
m×k are the k latent tastes of users, with each uτ

i∗ representing the latent taste
of user i. Vτ = [vτ∗1, ..., v

τ
∗k] ∈ R

n×k are the k latent features of items, with
each vτi∗ representing the latent feature of item i. Bτ ∈ R

k×k is the cluster-level
codebook representing the association between Uτ and Vτ , τ ∈ {1, 2}.

Since auxiliary data R1 share the common set of users with the target data
R, we can share the latent tastes of users between them, that is, U0 = U1,
where U0 denotes the common latent tastes of users. Similarly, since auxiliary
data R2 share the common set of items with the target data R, we can share
the latent features of items between them, that is, V0 = V2, where V0 denotes
the common latent features of items. U0 and V0 are the common latent factors,
which will be used as the first type of bridge for knowledge transfer.

It is worth noting that, the latent factors extracted by GWNMTF can respect
the intrinsic neighborhood structure better than those extracted by Sparse Sin-
gular Value Decomposition (SVD) [12], thus can fit sparse target data better.
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Similarity Graph Construction. Collaboration information between users or
items contained in the rating matrix has been widely explored for CF. However,
in extremely sparse target data, two users may rate the same item with low
probability though they have the same taste. To avoid this data sparsity issue,
we construct the similarity graphs from dense auxiliary data since they share
common users or items with target data. Because U0 and V0 are denser than
R1 and R2 and can better respect the collaboration information underlying the
target data, we propose to construct similarity graphs of users and items from
U0 and V0, respectively. We define the distance between users/items as follows:

(WU )ij =

{
1, if u0

i∗ ∈ Np

(
u0
j∗
)
or u0

j∗ ∈ Np

(
u0
i∗
)

0, otherwise

(WV )ij =

{
1, if v0

i∗ ∈ Np

(
v0
j∗
)
or v0

j∗ ∈ Np

(
v0
i∗
)

0, otherwise

(2)

where u0
i∗ is the ith row of U0 to denote the latent taste of user i, v0

i∗ is the ith
row of V0 to denote the latent feature of item i, Np(u

0
i∗) and Np(v

0
i∗) are the

sets of p-nearest neighbors of u0
i∗ and v0

i∗, respectively. The positive semi-definite
symmetric matrices WU and WV are the weight matrices for the similarity
graphs, which will be used as the second type of bridge for knowledge transfer.

4.2 Twin Bridge Transfer

In the second step, we introduce the objectives for latent factor transfer and
similarity graph transfer respectively, and then integrate them into a unified
optimization problem for twin bridge transfer learning.

Latent Factor Transfer. Since the latent factors of users/items may not be
shared as a whole between domains, we propose to transfer latent factors U0,V0

to the target data via two regularization terms ‖U−U0‖2F and ‖V −V0‖2F ,
instead of enforcing U ≡ U0,V ≡ V0. This leads to the latent factor transfer

min
U,V,B≥0

OUV =
∥∥Z� (

R−UBVT
)∥∥2

F
+ λU ‖U−U0‖2F + λV ‖V −V0‖2F (3)

where λU , λV are regularization parameters indicating our confidence on the
latent factors. Since the target data are extremely sparse, the latent factors
U0,V0 may transfer some negative information to the target data. Therefore,
we introduce similarity graph transfer as a complementary method in the sequel.

Similarity Graph Transfer. Based on the manifold assumption [18], similar
users/items should have similar latent tastes/features. Therefore, preserving the
neighborhood structure underlying the users/items in the target data are reduced
to the following graph regularizers encoding the constructed similarity graphs
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where DU = diag
(∑

j (WU )ij

)
, DV = diag

(∑
j (WV )ij

)
. LU = DU −WU

and LV = DV −WV are the graph Laplacian matrices for the similarity graphs.
Incorporating the graph regularizers into the objective function of nonnegative

matrix tri-factorization, we obtain the following similarity graph transfer

min
U,V,B≥0

OGUGV =
∥∥Z� (

R−UBVT
)∥∥2

F
+ γUGU + γV GV (5)

where γU , γV are regularization parameters indicating our confidence on the
similarity graphs. With similarity graph transfer, we can essentially filter out
the negative information in the latent factors by using the nearest neighbor rule.
However, since the target data are extremely sparse, only transferring knowledge
from the similarity graphs may be insufficient. Thus we seek an integrated model.

Twin Bridge Transfer. Considering the aforementioned limitations, we in-
tegrate the latent factor transfer and similarity graph transfer into a unified
twin bridge transfer (TBT) method. In TBT, firstly, we extract the latent fac-
tors of users/items and construct the similarity graphs from them. Secondly, we
transfer latent factors as the first bridge to solve the insufficient transfer issue.
As mentioned before, these latent factors may contain negative information for
the target data and result in the negative transfer issue. So thirdly, we transfer
the similarity graphs as the second bridge to alleviate negative transfer and to
transfer more knowledge to the target data. It is worth noting that, each of the
twin bridge can enhance the learning of the other bridge during the optimiza-
tion procedure due to their complementary property. Therefore, we incorporate
Equations (3) and (5) into a unified Twin Bridge Transfer optimization problem

min
U,V,B≥0

O =
∥
∥
∥Z�

(

R−UBVT
)∥
∥
∥

2

F
+λU ‖U−U0‖2F+λV ‖V −V0‖2F+γUGU+γV GV

(6)

where λU , λV , γU , γV are regularization parameters. If λU , λV > γU , γV , the
transferred latent factors dominate the recommendation results; otherwise, the
transferred similarly graphs dominate the recommendation results. With TBT,
we can transfer more knowledge from dense auxiliary data to sparse target data
to reduce the data sparsity, and substantially avoid the negative transfer issue.

4.3 Learning Algorithm

We solve the optimization problem in Equation (6) using the gradient descent
method. The derivative of O with respect to U (the other variables are fixed) is

∂O
∂U

= −2Z�RVBT + 2Z� (
UBVT

)
VBT + 2λU (U −U0) + 2γULUU
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Algorithm 1. TBT: Twin Bridge Transfer Learning for Collaborative Filtering

Input: Data sets R,Rτ ,Z,Zτ , τ ∈ {1, 2}, parameters k, p, λU , λV , γU , γV .
Ouput: Latent factors U, V, and B.
1: Extract latent factor U0,V0 by Equations (1).
2: Construct similarity graphs GU ,GV from U0,V0 by Equations (4).
3: for it← 1 to maxIt do
4: update U, V, and B by Equations (7)∼(9), respectively.
5: end for

Using Karush-Kuhn-Tucker (KKT) condition [19] for nonnegativity of U, we get[−Z�RVBT + Z� (
UBVT

)
VBT + λU (U−U0) + γULUU

]�U = 0

Since LU may take mixed signs, we replace it with LU = L+
U −L−

U , where L
+
U =

1
2 (|LU |+ LU ), L

−
U = 1

2 (|LU | − LU ) are positive-valued matrices. We obtain

U← U�
√

Z�RVBT + λUU0 + γUL
−
UU

Z� (UBVT )VBT + λUU+ γUL
+
UU

(7)

Likewise, we derive V and B in similar way and get the following update rules

V← V �
√√√√ (Z�R)

T
UB+ λV V0 + γV L

−
V V

(Z� (UBVT ))
T
UB+ λV V + γV L

+
V V

(8)

B← B�
√

UT (Z�R)V

UT (Z� (UBVT ))V
(9)

According to [4], updating U, V and B sequentially by Equations (7)∼(9) will
monotonically decrease the objective function in Equation (6) until convergence.

The learning algorithm for TBT is summarized in Algorithm 1. The time
complexity is O(maxIt · kmn+mn2+m2n), which is the sum of TBT cost plus
the time cost for the latent factor extraction and similarity graphs construction.

5 Experiments

In this section, we conduct experiments to compare TBT with state-of-the-art
collaborative filtering methods on benchmark data sets with high sparsity level.

5.1 Data Sets

MovieLens10M1 MovieLens10M consists of 10,000,054 ratings and 95,580 tags
given by 71,567 users to 10,681 movies. The preference of the user for a movie
is rated from 1 to 5 and 0 indicates that the movie is not rated by any user.

1 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/
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Table 2. Description of the data sets for evaluation

Data Sets
MovieLens10M Epinions

Size Sparsity Size Sparsity

R
Target (training)

5000×5000

0.01∼1%

1662×2078

0.01∼1%
Target (test) 8.22∼8.13% 1.86∼0.87%

R1 (user side) Auxiliary 2.31% 0.65%
R2 (item side) Auxiliary 9.14% 1.28%

Epinions2 In epinions.com, users can assign products with integer ratings
ranging from 1 to 5. The dataset used in our experiments is collected by crawling
the epinions.com website during March, 2012. It consists of 3,324 users who
have rated a total of 4,156 items, and the total number of ratings is 138,133.

The data sets used in the experiments are constructed using the same strategy
as [12]. For the MovieLens10M data set, we first randomly sample a 104 × 104

dense rating matrix X from the MovieLens data. Then we take the submatrices
R = X1∼5000,1∼5000 as the target rating matrix, R1 = X1∼5000,5001∼10000

as the user-side auxiliary data and R2 = X5001∼10000,1∼5000 as the item-side
auxiliary data. In this way, R and R1 share common users but not common
items, while R and R2 share common items but not common users. We use the
same construction strategy for the Epinions data. In all experiments, the target
ratings R are randomly split into a training set and a test set. To investigate the
performance of each method on sparse data, we sampled training set randomly
with a variety of sparsity levels from 0.01% to 1%, as summarized in Table 2.

5.2 Evaluation Metrics

We adopt two evaluation metrics, Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), which are widely used for evaluating collaborative filter-
ing algorithms [4, 12]. MAE and RMSE are defined as

MAE =

∑
i,j

∣∣∣Rij − R̃ij

∣∣∣
|TE | RMSE =

√√√√∑
i,j (Rij − R̃ij)

2

|TE |

Where Rij is the rating that user i gives to item j in test set, while R̃ij is the
predicted value of Rij by CF algorithms, |TE| is the number of ratings in test
set. We run each method 10 repeated trials with randomly generated training set
and test set from R, and report the average MAE and RMSE of each method.

5.3 Baseline Methods & Parameter Settings

We compare TBT with Probabilistic Matrix Factorization (PMF) [20], Weight
Nonnegative Matrix Factorization (WNMF) [21], Graph Regularized Weighted
Nonnegative Matrix Tri-Factorization (GWNMTF) [4], Coordinate System Trans-
fer (CST) [12], our proposed TBTUV (defined in Equation (3)) and TBTG

2 http://www.epinions.com/

http://www.epinions.com/
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Table 3. MAE & RMSE comparison on MovieLens10M

Sparsity
Methods Without Transfer Method With Transfer
PMF WNMF GWNMTF CST TBTG TBTUV TBT

MAE

0.01% 1.171 2.7966 0.8321 0.9814 0.7535 0.7272 0.6978±0.0006
0.05% 1.0256 1.3835 0.7663 0.8409 0.6945 0.7492 0.6903±0.0007
0.10% 0.90232 0.9506 0.7407 0.7629 0.6853 0.7275 0.6840±0.0005
0.50% 0.73368 0.697 0.6862 0.6799 0.6707 0.6785 0.6690±0.0001
1% 0.70398 0.6743 0.6728 0.6677 0.6649 0.6677 0.6640±0.0000

Average 0.9073 1.3004 0.7396 0.7866 0.6938 0.7100 0.6810±0.0004

RMSE

0.01% 1.3717 3.1434 1.0299 1.3926 0.9445 0.9397 0.8995±0.0011
0.05% 1.2333 1.8779 0.97 1.1225 0.8896 0.9594 0.8893±0.0012
0.10% 1.1097 1.3199 0.944 0.997 0.8812 0.935 0.8817±0.0008
0.50% 0.93171 0.9076 0.8802 0.8755 0.8628 0.8734 0.8608±0.0001
1% 0.90112 0.8718 0.8645 0.8605 0.8561 0.8601 0.8550±0.0000

Average 1.1095 1.6241 0.9377 1.0496 0.8868 0.9135 0.8772±0.0007

Table 4. MAE & RMSE comparison on Epinions

Sparsity
Methods Without Transfer Method With Transfer
PMF WNMF GWNMTF CST TBTG TBTUV TBT

MAE

0.01% 1.6758 3.7617 0.9875 0.9781 0.9066 0.8806 0.8737±0.0046
0.05% 1.6341 3.0304 0.9792 0.9629 0.8838 0.9122 0.8740±0.0043
0.10% 1.5555 2.3353 0.9682 0.9506 0.8773 0.9258 0.8682±0.0018
0.50% 1.1083 1.0465 0.8902 0.8837 0.8543 0.8846 0.8441±0.0016
1% 0.9824 0.8769 0.8539 0.8467 0.8379 0.8478 0.8294±0.0008

Average 1.3912 2.2102 0.9358 0.9244 0.8720 0.8902 0.8579± 0.0026

RMSE

0.01% 1.8474 3.999 1.2665 1.3063 1.1427 1.1366 1.1164±0.0022
0.05% 1.8136 3.4811 1.2508 1.2695 1.118 1.1755 1.1116±0.0022
0.10% 1.7464 2.9094 1.233 1.2403 1.1173 1.1919 1.1105±0.0021
0.50% 1.3641 1.4222 1.1289 1.1422 1.0885 1.1369 1.0790±0.0007
1% 1.218 1.1457 1.0932 1.0981 1.0766 1.095 1.0688±0.0005

Average 1.5979 2.5915 1.1945 1.2113 1.1086 1.1472 1.0973±0.0015

(defined in Equation (5)). Different numbers of latent factors {5, 10, 15, 20} and
different values of regularization parameters {0.01, 0.1, 1, 10,100} of each method
are tried, with the best ones selected for comparison. Since all the algorithms are
iterative ones, we run each of them 1000 iterations and report the best results.

5.4 Experimental Results

The experimental results on MovieLens10M and Epinions are shown in Table 3
and Table 4 respectively. From the tables, we can make several observations.

• TBT performs better than all baseline methods under all sparsity levels. It
confirms that simultaneously transferring latent factors and similarity graphs as
twin bridge can successfully reduce the sparsity in the target data.
• It is interesting to see that, for our method, the sparser the target data are,

the more improvement can be achieved. This can be explained by two reasons.

First, when the rating data are sparse, matrix factorization methods that rely on
neighborhood information is ineffective due to: 1) it is impossible to compute the
similarity between users/items when data are extremely sparse, and 2) even if
some similarity information is calculated, this information may be too limited to
recommend correct items. So its prediction performance gets worse when rating
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Fig. 3. Impact of #latent factors on Epinions (above) and MovieLens10M (bottom)

data are coming more spare. To handle this problem, we construct a twin bridge,
which can transfer more knowledge from dense auxiliary data to the target data.

Secondly, towards the negative transfer issue, CST encounters the problem
that the transferred latent factors extracted from the auxiliary data may con-
tain some negative information for the target data. Our twin bridge transfer
mechanism alleviates this problem by using similarity graphs as regularization
when training the recommendation model. Notably, the graph regularization can
filter out the negative information introduced by the transferred latent factors.
With this advantage, TBT is made more robust to the extremely sparse data.

• Although TBT is a combination of our proposed TBTUV and TBTG, it
outperforms both of them. This proves that the twin bridge transfer can reinforce
the learning of both bridges. Each bridge emphasizes different properties of the
data and enriches the matrix tri-factorization with complementary information.
• Unfortunately, transfer learning method CST has not consistently out-

performed non-transfer learning methods GWNMTF. CST takes advantage on
moderately sparse data (0.1%∼1%) by knowledge transfer. However, under ex-
tremely sparsity levels (0.01%∼0.1%), the latent factors transferred by CST may
contain some negative information for the target data. In this case, GWNMTF
performs better than CST, since it is not affected by the negative transfer issue.

5.5 Parameter Sensitivity

We investigate the parameter sensitivity by varying the values of k, λ and γ under
different sparsity levels. As Figure 3 shows, under a given sparsity level, the more
latent factors used, the better the performance is. Typically, we set k = 20 as
used by baseline methods. For λ and γ, We set λ = γ in TBT for easy comparison
with baselines, and report average MAE in Figure 4. Each column corresponds
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Fig. 4. Regularization param impact on Epinions (above)/MovieLens10M (bottom)

to a specific sparsity level of training ratings while each row corresponds to a
different dataset. We observe that, 1) TBT method performs much more stably
under different parameter values and sparsity levels than the baseline methods,
and 2) neither non-transfer method GWNMTF or single bridge transfer methods
CST/TBTG can perform stably under different parameter values, sparsity levels,
or data sets. Luckily, our TBT benefits from its twin bridge mechanism and
performs much more robustly under all of these experimentation settings.

6 Conclusion

In this paper, we proposed a novel approach, Twin Bridge Transfer Learning
(TBT), to reduce the sparsity in the target data. TBT consists of two sequential
steps: 1) TBT extracts latent factors of users and items from dense auxiliary data
and constructs similarity graphs from them; 2) TBT utilizes the latent factors
and similarity graphs as twin bridge to transfer knowledge from dense auxiliary
data to sparse target data. By using the twin bridge, TBT can enhance sufficient
transfer by transferring more knowledge, while alleviate negative transfer by
regularizing the learning model with the similarity graphs, which can naturally
filter out the negative information contained in the latent factors. Experiments
on real-world data sets validate the effectiveness of the proposed TBT approach.
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